ZUR SPALTUNG DER SULFENAMIDBINDUNG IN o-NITROPHENYLSULFENYLAMINOSÄUREN UND -PEPTIDEN*

Dietrich Brandenburg

Deutsches Wollforschungsinstitut

an der Technischen Hochschule Aachen

(Received 10 October 1966)

Der von Z e r v a s (1) zum Schutz der Aminogruppe in die Peptidchemie eingeführte o-Nitrophenylsulfenylrest** läßt sich in Gegenwart säurelabiler Gruppen mit zwei Äquivalenten Chlorwasserstoff in den meisten Fällen selektiv abspalten.

1) Np-S-NH-R + 2 HCl \longrightarrow Np-S-Cl + $^{+}$ H₃N-R Cl

Bei der Einwirkung von Chlorwasserstoff auf Nps-Cys(Tri) sowie Nps-Cys(Tri)-Ala-Gly wurden jedoch hellgelb gefärbte Nebenprodukte (nax 351 nm) erhalten, die durch Angriff

^{*) 62.} Mitteilung über Peptide; 61. Mitt.: H. Klostermeyer, J. Halstrøm, P. Kusch, J. Föhles und W. Lunkenheimer, Proceedings of the VIIIth European Peptide Symposium, im Druck

^{**)} Abkürzungen: Np = o-Nitrophenyl, Nps = o-Nitrophenyl-sulfenyl, Tri = Triphenylmethyl

6202 No.49

von Nps-Cl am Schwefelatom des geschützten Cysteins entstanden waren (2). Daraus ergab sich die Notwendigkeit, nach schonenderen Abspaltungsbedingungen zu suchen.

1. Mercaptolyse

Die Spaltung von Sulfenamidbindungen mit nucleophilen Reagenzien im zumeist schwach sauren Gebiet war bekannt (3-7). Nach Beginn dieser Arbeit haben K e s s l e r und I s el i n (3) sowie S c o f f o n e und Mitarbeiter (9) über die Deblockierung mit Hilfe von Mercaptanen berichtet. Außer der jeweiligen Aminokomponente wurden keine Reaktionsprodukte isoliert.

Eigene Versuche ergaben, daß Nps-Aminosäuren in verdünnter wässriger Lösung (pH 8) durch einen Überschuß an aliphatischem Mercaptan unter Bildung von Aminosäure und o-Nitrothiophenol (I) gespalten werden. Der pH-Wert steigt dabei an.

3) Np-S-S-R' + H-S-R'
$$\longrightarrow$$
 Np-S-H + R'-S-S-R'

Der zeitliche Verlauf der Reaktion wurde an der Änderung des Absorptionsspektrums (Abnahme der Extinktion bei 385 nm, Verschiebung nach 410 nm = Maximum des Thiophenolat-Ions, log £ = 3,176) verfolgt. Es zeigten sich große Unterschiede in der Reaktionsgeschwindigkeit (Tabelle 1).

TABELLE 1

Spaltung von Nps-Aminosäuren (10⁻³m) mit Mercaptoäthanol (10⁻¹m) in 0.5 m NaHCO₃-Lösung bei Raumtemperatur

Nps-Aminosäure	Halbwertszeit (Min.)	
Gly	< 2	
Ala	4	
Leu	9	
Val	26	
Phe	33	

Als weiteres Reaktionsprodukt wurde bei Umsetzungen in konzentrierterer Lösung das schwerlösliche o,o'-Dinitro-diphenyldisulfid (II) erhalten. Die Ausbeute nahm mit abnehmendem Molverhältnis Mercaptan:Nps-Aminosäure zu. Bei der Einwirkung von 5 Äquivalenten Thioglykolsäure auf Nps-Alanin (0.2m) in 0.5 m Natriumhydrogencarbonatlösung fielen innerhalb von 15 Minuten 49 % II (Schmp. 191-192°) aus.

42 % I (Schmp. nach Umkrist. 56-58°, Lit. 57-58°) wurden aus der angesäuerten Reaktionslösung extrahiert. II wird, wie die Versuche in Tabelle 2 zeigen, überwiegend nach Gleichung 4 und nicht durch Mercaptan-Disulfidaustausch (10) gebildet.

4) Np-S-NH-R + Np-S-H
$$\longrightarrow$$
 Np-S-S-Np + H_2 N-R

TABELLE 2
Umsetzung von Nps-Verbindungen (0.033m) mit Mercaptanen in 0.5 m NaHCO3-Lösung im Molverhältnis 1:1 bei Raumtemperatur. Reaktionszeit: 10 Minuten

Verbindung	Mercaptan	% (Nps) ₂	% Nps-H
Nps-Ala	HS-CH ₂ -COOH	76	18
Nps-S-CH ₂ -COOH	HS-CH ₂ -COOH	0	100
Nps-S-CH ₂ -COOH	Nps-H	15	
Nps-Ala	Nps-H	72	

Bei tieferen pH-Werten wurden abnehmende Mengen von II erhalten. Der Anteil der Konkurrenzreaktion 4 an der Spaltung der Sulfenamidbindung sinkt, da infolge der höheren Stabilität des unsymmetrischen Disulfids weniger I nach Gleichung 3 entsteht. Bei der Reaktion von Nps-Alanin (0.4 m) mit 1 Äquivalent Thioglykolsäure in Methanol ohne Zusatz von Base wurden nach 10 Minuten 70 % Alanin und 35 % II erhalten. Das unsymmetrische Disulfid Nps-S-CH₂-COOH wurde in 18-proz. Ausbeute (aus Benzol umkrist.) isoliert (Schmp. 115-116°, Lit. 119-120°. Mischschmelzpunkt mit nach (11) synthetisiertem Material vom Fp. 114-116°: keine Depression). Wesentlich langsamer verlief die Spaltung von Nps-Fhenylalanin: 49 % Phenylalanin und 34 % II wurden nach einstündiger Reaktion mit 5 Äquivalenten Thioglykolsäure erhalten.

Besonders geeignet als Spaltungsreagenz erwies sich Nps-H.
Nach Gleichung 4 entsteht neben der Aminokomponente als
alleiniges Reaktionsprodukt das stabile (Nps)₂, während
sich bei allen anderen Mercaptanen die Reaktionen 2-4 überlagern. In Pyridiniumacetatlösung ließ sich in allen Fällen eine befriedigend rasche Spaltung erreichen. Einige
Versuchsergebnisse sind in Tabelle 3 zusammengestellt.

TABELLE 3
Spaltung von Nps-Verbindungen mit o-Nitrothiophenol

Nps- Verbindung	Konz. (Mol/1)	Np s- H Äq.	Lösungs- mittel	Reakt zeit (Min.)	Spaltung %
Gly	0.1	2	MeOH	15	85
Gly-OMe	0.1	2	11	15	26
Gly-OMe	0.1	2	O.1 m AcOH/MeOH	15	50
Phe	0.05	1.5	MeOH	60	39
Phe	0.05	1.5	Pyridin	60	3
Phe	0.05	1.5	1 m AcOH/ MeOH	60	26
Phe	0.05	1.5	1 m Pyrid acetat/MeOH	60	81
Phe-OMe	0.2	2	1 m AcOH/ MeOH	30	37
Phe-OMe	0.2	2	1 m Pyrid acetat/MeOH	30	93
Leu-Phe-OMe	0.2	3	n	60	95
Cys(Tri)- Ala-Gly	0.1	3	tt .	60	85

6206 No.49

2. Modifizierte Säurespaltung

Mercaptane reagieren mit Sulfenylhalogeniden ohne Zusatz von Base zu Disulfiden (12).

5)
$$R - S - H + R' - S - C1 \longrightarrow R - S - S - R' + HC1$$

Entsprechend dieser Reaktion konnte das nach Gleichung 1 bei der Säurespaltung entstehende Nps-Cl durch Zugabe von Mercaptoäthanol abgefangen werden. Dabei zeigte es sich. daß eine vollständige Deblockierung mit nur einem Äquivalent Chlorwasserstoff möglich ist, da der nach Gleichung 5 gebildete Chlorwasserstoff wieder in die Spaltungsreaktion 1 eintritt (13). Zur Spaltung wurde jeweils 1 mMol Nps-Verbindung in ca. 10 ml Chloroform nacheinander mit 5 mMol Mercaptoäthanol und dann mit 1 mMol ätherischer Salzsäure versetzt. Nach 5 Minuten wurden aus Nps-Glycin, Nps-Phe-OMe, Nps-Leu-Phe-OMe (Schmp. 107° , $[\alpha]_{D}^{22}$ - 27° (c=1, Methancl)) und Nps-Ser(Bu^t) die Hydrochloride der Aminoverbindungen in reiner Form isoliert (85-95 % Ausbeute). Nps-Cys(Tri)-Ala-Gly (Schmp. 110-114°, $[\alpha]_D^{22}$ - 31.7° (c=1, Chloroform)) gab das kristalline Tripeptid (Schmp. 156-1570, $\left[\alpha\right]_{D}^{22}$ + 3.8° (c=1, Dimethylformamid)) in 84 % Ausbeute. Nebenreaktionen traten nicht auf.

Die in diesem Bericht mitgeteilten Forschungsarbeiten wurden mit Mitteln des Bundesministeriums für wissenschaftliche Forschung (Forschungsvorhaben St.-N. 213-66) gefördert.

No.49 6207

Literatur

- 1) L. Zervas, D. Borovas und E. Gazis, <u>J. Amer. chem. Soc.</u> 85, 3660 (1963)
- 2) Über Versuche zur Spaltung der Thioätherbindung wird an anderer Stelle berichtet
- 3) 0. Foss, Acta chem. scand. 1, 307 (1947)
- 4) H. Z. Lecher und E.M. Hardy, J. org. Chem. 20, 475 (1955)
- 5) B. Ekström und B. Sjöberg, <u>Acta chem. scand.</u> 19, 1245 (1965)
- 6) J. König, L. Novák und J. Rudinger, <u>Naturwissenschaften</u> 52, 453 (1965)
- 7) s. auch Lit. 13)
- 8) W. Kessler und B. Iselin, <u>Helv. chim. Acta</u> 49, 1330 (1966)
- 9) A. Fontana, F. Marchiori, L. Moroder und E. Scoffone, <u>Tetrahedron Letters</u> 26, 2985 (1966)
- 10) vgl. A. J. Parker und N. Kharasch, <u>Chem. Reviews</u> <u>59</u>, 583 (1959)
- 11) M. Carmack und J. F. Harris, US Pat. 2 849 479 (26.8.1958)
- 12) vgl. E. E. Reid, <u>Organic Chemistry of Bivalent Sulfur</u>, Band 3, S. 367, Chemical Publishing Co., New York (1960)
- 13) K. Poduška, H. Zimmermannová Maassen van den Brink,
 J. Rudinger und F. Sorm haben über die Spaltung mit

 1 Äquivalent HCl/Alkohol berichtet (Proceedings of the

 VIIIth European Peptide Symposium, im Druck)